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Abstract 

A prototype system employing a genetic algorithm (GA) has been developed to support 
the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used 
and appropriate genetic operators have been created. Several different crossover styles 
(random point selection, evolving points, and smart point selection) are tested and the 
best GA is compared with a neural network (NN) based optimizer. The smart crossover 
operator produces the best results and the GA system is able to evolve complete schedules 
using it. The GA is not as time-efficient as the NN system and the NN solutions tend to 
be better. Work is proposed to create a classifier system which can draw more effectively 
on the knowledge that is available in the scheduling domain. 

1 .  Introduction 

Genetic algorithms (Holland, 1975) are modeled from organic evolutionary systems and 
have been applied to search problems. Schaffer et a l ( l 9 8 8 )  examined the evolution of 
crossover points (a technique used to minimize disruption of high performance schemata in 
chromosomes). Greffenstette (1988) has examined genetic algorithms with respect to rule 
discovery. De Jong (1980) applied GA technology to the problem of adaptive system 
design. 

Genetic algorithm technology has been applied to real world problems such as scheduling. 
Hilliard et a1 (1988) have designed a competition-based system to discover scheduling 
heuristics. Baffes et aZ(l988) used greedy double-crossover techniques to generate optimal 
solutions to the space station mobile transporter scheduling problem. 

This report describes on-going research wherein genetic algorithm technology has been 
applied to the problem of searching for feasible schedules for the Hubble Space Telescope 
and is organized as follows: First, a description of the Space Telescope and the constraint 
propagation system is given. Second, an informal analysis of the problem complexity is 
provided. Next, the genetic algorithm, crossover operators, and the results of 
experimentation that has been done are reported. Last, the results are discussed. 

* Operated by the Association of Universities for Research in Astronomy for the National Aeronautics and 
Space Administration 
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2 .  The Hubble Space Telescope and SPIKE 

The Hubble Space Telescope (HST) is an astronomical observatory that is to be placed into 
orbit in the near future by a space shuttle mission. The Space Telescope Science Institute is 
responsible for software ground support for HST. This involves, among other tasks, the 
processing of proposals (specifications for scientific experiments) submitted by 
astronomers in the international community. A proposal generally contains requests for 
activities (target acquisitions, exposures, and calibrations) and may include constraints 
upon these activities (e.g., "A before B"). The AI group at STScI has developed a system 
called Spike, which is a long-term scheduling utility. This system is described briefly 
below; for a more complete discussion of the Spike system, see Miller et aZ(1988). 

2.1.  

The Spike system supports and processes the following data objects: targets (stars, etc.), 
activities (exposures, etc.), absolute constraints (e.g., moon exclusion), and 
relative constraints (e.g., "A before B"). Each activity has an associated suitability 
that is a function of time and which provides knowledge about when it is legal to schedule 
an activity. A suitability is represented internally by a piecewise constant function 
(PCF) and is a list of timehahe pairs (e.g., (minus-infinity 0 100 0.5 150 1 200 0.5 300 
0)). Each absolute constraint is derived from appropriate astronomical models (e&, the 
moon-exclusion constraint suitability is a function of target position and has value of 1 
when the moon does not block the target and value of 0 otherwise). The suitability of a 
relative constraint is determined by looking at the activities that are linked via the constraint. 
For example, the suitability of the constraint "A before B" is calculated by looking at the 
legal times for A and doing the arithmetic to determine what times are legal for B such that 
B will follow A. 

Description of the Constraint-Based Scheduler 

A group of activities linked via relative constraints is called a dependency cluster. 
Constraints may indirectly interact via common activity connections and so a constraint 
propagation technique is used. For example, if the explicit constraints "A before B" and 
"B before C" are specified, then "A before C" is an implicit constraint that is inferred via 
this propagation. 

Spike is responsible for producing coarse year-long schedules consisting of time 
segments that are roughly week-long. Generating a finer schedule far in advance of 
execution is not reasonable (as the difference between present and future time increases the 
accuracy of HST orbit models decreases). The assignment of an activity to a time segment 
is called a commitment. This action causes the PCF of the activity to be zeroed over all 
time points outside of the selected time segment. 
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2 . 2 .  Complexity of Scheduling Problem 
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The scheduling of HST is an NP-complete problem. The generation and testing of all 
possible schedules is therefore practically impossible in cases where the numbers of things 
to be scheduled is large. In order to examine the complexity, let A be the number of 
activities to be scheduled and let S be the number of time segments in a schedule. The 
number of ways that one can assign A activities to S time segments is SA. 

The order in which the commitments in a possible schedule are made is important in 
judging the merits of a schedule. First, not all possible schedules can be instantiated; doing 
some subset of commitments may cause some other subset of commitments to be illegal. 
Second, in Spike the summed suitability of a schedule is used to rate the overall goodness; 
different orderings of the same set of activityhegment commitments will yield different 
results. Consider Figure 1 which illustrates how the ordering of commitments is important. 
On the basis of this, the complexity of the HST scheduling problem is O(A! SA). 
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Figure 1. The ordering of commitments may yield different schedule suitabilities. In 

this contrived example, the relative constraint within-2-time-units(A, B,  C) 
is implicit; this means that it is only legal to commit the activities so 
constrained such that no two are more than 2 time units apart. Committing 
activities A and B first in Schedule 1 disallows the (C 5) commitment (due 
to constraint violation) and produces suitability of 20; committing C and B 
first in Schedule 2 disallows the (A 1) commitment and produces suitability 
of 15. (A commitment is represented here as a small dark bar on a time 
line.) 
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2 . 3 .  Meta-Scheduling Techniques 

The core Spike system has been implemented in a Common Lisp/Flavors/Common 
Windows environment. A user can manually create schedules or several procedural 
algorithms can be applied to automatically create schedules. The goal of the planning group 
is to use a meta-scheduling system to search for "optimal" solutions. A rule-based system 
and a neural network (NN) system (Johnston, 1989) have produced very promising 
results. 

3 .  A Genetic Algorithm Applied to HST Scheduling 

Genetic Algorithm technology has been applied to the HST scheduling problem in the form 
of a prototype system coded in Common Lisp that interacts with Spike and the neural 
network representation of commitments and constraints. 

3.1.  Representation of Knowledge Structures 

The classic bit-string representation was not used in the GA prototype due to these factors: 
Crossover must yield complete schedules (one in which all activities are included) and the 
order of the commitments is important. Instead, the following representation was used. 
Each knowledge structure (chromosome) is a list consisting of sublists. Each sublist 
.contains an activity id and a time segment number. An example chromosome illustrates: ((a 
5) (b 7) (c 10) (d 10)). The ordering from left to right specifies the ordering of the 
commitment attempts. The interpretation of the example chromosomes is this: First attempt 
to commit activity a to time segment 5, then attempt to commit b to 7, and so on. All 
commitment pairs are attempted. The success of a given commitment attempt may have an 
affect on successive attempts. This is due to changes in suitabilities resulting from 
constraint propagation (i.e., commiting a to 5 may remove 10 as a valid time for c). 

3 . 2 .  Crossover Techniques 

In order to support exploration (via recombination) through the search space, two types of 
crossover are used. They have been called horizontal and vertical. 

Vertical crossover is a binary operator and works in the following way. Let Ci and c k  be 
chromosomes. Select a site Sa in Ci where the desired cross is to occur. Then find the 
activity A, at that site, and the corresponding site s b  in c k  where A, resides. Swap the 
segments Ta at site sa and Tb at site sb.  For example, if c i  is ((a 1) (b 2)(c 3)) and c k  is 
((b 8) (a 7) (c 6)) ,  swapping at site 2 in Ci will result in two new chromosomes: ((a I )  (b 8) 
(c 3)) and ((b 2) (a 7) (c 6)) .  This technique bears some resemblance to Goldberg's 
partially matched crossover (Goldberg, 1988). Vertical crossover can be applied iteratively 
over a range from one site to another. 

Horizontal crossover is a unary operator and works as follows. Select two sites on the 
chromosome to be manipulated. Swap the two activitylsegment pairs at those sites. For 
example, if the chromosome is ((a 1) (b 2) (c 3) (d 4)) and the sites are 2 and 4, the result 
will be ((a 1) (d 4) (c 3) (b 2)). 
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3.3.  The Mutation Operator 

The mutation operator works as follows: For a given chromosome iterate over each 
activityhegment pair. Flip a biased coin and if true results randomly select a new segment 
for the activity from the Table of Legal Segments. 

3 . 4 .  The Genetic Algorithm 

The genetic algorithm developed is not a general purpose parameter optimizer due to the 
unusual chromosome form. It does fit, however, into the general purpose design of the 
Spike scheduling system. Certain modifications to the algorithm form the basis for the 
experimentation reported here (details are found in later sections). Chromosomes are 
haploid. The pseudo-code algorithm and functional descriptions follow: 

initialize-spike-system 
create-table-of-legal-segments 
setup-initial-population 
process-chromosomes 
loop-while (no-solution OR generations < max-gen) 

reproduce-chromosomes 
process-chromosomes 

end-of-loop 

To execute initialize-spike-system, proposals are selected from a pool and Spike data 
structures are instantiated as usual. In order to execute create-table-of-legal- 
segments, for each activity, a list of the legal segments where (at least initially) the activity 
could be committed is collected and stored in the Table with the activity. 

The setup-initial-generation function creates a set of chromosomes of a specified size. 
To generate one chromosome, a complete set of randomly ordered activities is created. For 
each activity a segment number is selected randomly from the Table of Legal Segments. 

The function process-chromosomes is responsible for interpreting (determining the 
fitness of) each chromosome (Ci) in a generation as well as calculating the average fitness 
of the generation and the relative fitness of each chromosome. The formula used to 
calculate a chromosome's fitness follows: 

fitness(Ci) = expt( 10 * commitments/possible-commitments) * 
summed-suitability(Ci) 

The fitness function is heavily biased such that schedules with high commitment ratios are 
favored (the adjusted ratio is exponentiated with base of e) .  The motive for this was to 
highly reward the system for completed schedules. The function factors in the suitability of 
the schedule; this acts in a more subtle manner to differentiate schedules based on how 
good the commitments were. 
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Baker's Stochastic Universal Selection Process (Baker, 1988) is used to select offspring 
(surviving chromosomes) from the individuals in the generation. This technique selects 
offspring from a population based on the relative fitness of the individuals and is linear in 
complexity. 

The step labeled reproduce-chromosomes executes crossover and mutation on each 
offspring. These actions are triggered with some specified probability. 

3 . 5 .  Neural Network Used for Rapid Fitness Analysis 

During chromosome interpretation, the Spike system is commanded to make a series of 
commitments. With each commitment, expensive processing is done (mostly to propagate 
relative constraints). In order to minimize this processing the following approach has been 
taken. A neural network is created that stores (as connection strengths) what changes occur 
to suitabilities when any given commitment is made. This network is then used to execute 
fitness evaluation. This approach has decreased GA processing time by at least one order of 
magnitude; the number of disposable cons ceZZs generated is also much lower. 
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4 .  Description of Tested Hypotheses 
4 . 1 .  A Smart Horizontal Crossover Technique 

A modification on the basic random crossover technique has been developed because the 
random crossover was inefficient in achieving goal states. The smart horizontal crossover 
operator is knowledge-based and works as follows: Given two chromosomes Ci and c k  
that have had fitness evaluations and have been selected as a mating pair, randomly select 
one chromosome (e.g., Ci). Consider each site (activitylsegment pair) on Ci. If a site coded 
for a legal commitment (within the context of the ordered set of sites) then do nothing. If 
the site did not code for a legal commitment (as a result of previous commitments), execute 
a single vertical crossover with the appropriate site on the other chromosome (e.g., ck). 
This technique will tend to preserve good regions regardless of length for one of the two 
chromosomes. Figure 2 illustrates. 

Legal Commitment: 

( ( A  1 (B  3) ( C  4) (D 7 )  1 
NIL T T NIL 

\ Y  
( ( C  8) ( A  10) (D 5) (B 6 )  1 

Figure 2. Smart horizontal crossover preserves high quality schemata. A T indicates a 
successful commitment and a NIL indicates an unsuccessful one. 

The following hypotheses have been tested and the results will be presented in a later 
section. 

Ho: A smart crossover will cause the GA to approach a solution state in 
roughly the same number of generations as that of a GA using a 
Random Crossover. 

H,: The GA employing Smart Crossover will reach a solution state in fewer 
generations than a GA using Random Crossover. 
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4 . 2 .  Evolution of Crossover Points 

An algorithm that supports the evolution of crossover points has been implemented. Let C1 
and C2 be the parent chromosomes. Associated with each are two crossover points. During 
crossover, one of the parents is randomly selected as the source of the two crossover points 
used for vertical crossover (which operates as usual). Let C3 and C4 be the offspring. C3 
will inherit the crossover points from C1 and C4 will inherit from C2. Crossover points are 
subjected to mutation with frequency that is based on the specified probability of that 
operator. A crossover point mutation is merely the random selection of a new chromosome 
site number. 

%: An evolving crossover will cause the GA to approach a solution state in 
roughly the same number of generations as that of a GA using a 
random crossover. 

H,: The GA employing the evolving crossover algorithm will reach a 
solution state in fewer generations than a GA using Random 
Crossover. 

4 . 3 .  GA technology vs Neural Network 

Since a neural network-based search algorithm is available, it seemed only reasonable to 
compare the two technologies. It was not expected that the GAS would perform as well as 
the NNs with respect to time. The summed suitability of solutions however was compared 
as a means to determine which technology produced more optimal solutions. 

5 .  Experimental Results 

Figures 3 and 4 illustrate the results from the experiments. The number of activities was 10 
and each activity was constrained in several ways. From ten trials, an "average" run was 
selected from the Random and Smart results; the change in number of commitments over 
time is seen in Figure 3. Also from ten trials, the best run has been selected from Random, 
Evolving, and Smart Crossover trials; these results are seen in Figure 4. 

In each trial, the probability of mutation was 0.03, the probability of crossover was 0.6, 
the population size was 30, and maximum allowed generations was 5 1. 
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Figure 4. Random vs Evolving vs Smart Crossover. For each algorithm, the best 
(highest fitness) run has been plotted. The number of mals was 10 and the 
solution goal was 10 commitments. 
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5 . 1 .  Smart Crossover 

Table 1 compares the performance of Smart versus Random Crossover. In all trials, the 
solution goal was 30 commitments, the population size was thirty, and the number of 
generations was thirty-one. The data indicate that the Smart Crossover produces statistically 
better results. The null hypothesis (see Section 4.1) is rejected and the true hypothesis is 
supported. 

Xover No. of Trials Mean Stand Dev Z stat 
Random 10 19.8 1.6 
Smart 10 25.1 1.79 6.98 

Table 1. Random versus Smart Crossover. The z statistic has been calculated to 
determine whether the trial samples have been drawn from the same 
population and seem to indicate otherwise. 

5 .2 .  Crossover Point Evolution 

The comparison of Random and Evolving Crossover Point algorithm is summarized in 
Table 2. The two populations are not significantly different and so the null hypothesis (see 
Section 4.2) regarding this technique is supported. 

Xover No. of Trials Mean Stand Dev Z stat 
Random 10 19.8 1.6 
Evolving 10 19.5 0.7 0.5 

Table 2. Random versus Evolving Crossover. The z statistic has been calculated to 
determine whether the trial samples have been drawn from the same 
population and this is indicated. 

5 . 3 .  GA vs NN 

Tables 3 and 4 contain the results of comparisons of the two algorithms. The neural 
network algorithm, when applied to the same proposal as the Genetic Algorithms, arrived 
at solutions in much less time (generally a few seconds); the GA took many minutes to 
compute solutions (or near solutions). The solutions that were acheived by the NN tended 
to be better than the GA solutions. 

Algorithm N Mean S e a  to S o h  Stand Dev Z stat 
N N  5 4.8 0.8 
GA 5 1435.0 133.0 24 

Table 3. Comparison of two search optimization algorithms with respect to speed. In 
all trials, >90% commitment of activities was achieved. The Z statistic 
indicates that the samples are not from the same population. 
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Algorithm N Mean Suitability Stand Dev 2 stat 
NN 5 18.0 0.1 
GA 5 9.9 1.3 13.9 

Table 4. Comparison of GA and NN optimization techniques with respect to schedule 
suitability. The Z statistic indicates that the samples are not from the same 
population. 

6 .  Discussion 

The experimental results concerning the Smart Crossover algorithm indicate that this 
method tends to more quickly approach a solution; exploitation seems to be favored at the 
expense of exploration however and this may reduce the chance of finding a global 
optimum. The rapid movement by the GA to a solution may be a good thing in this 
scheduling domain; the computational expense of the GA (and the associated fitness 
testing) requires that population size and number of generations be kept to reasonable 
numbers. 

The Random Cossover algorithm seems to more casually explore the search space. 
Looking at Figure 3, one sees empirical evidence for this in the oscillations and occasional 
radical backtracking to low fitness populations. The latter occurs after long periods of little 
change (and so may represent the probability that a higher than average number of 
mutations occurred in a single generation). 

It is unclear why the Evolving Crossover Point performed no better than Random 
Crossover. Tools for tracing the evolution of single chromosomes have been proposed and 
could perhaps aid in "debugging" GA runs. 

Continued work on this application of GA technology may yield better performing 
systems. There is a wealth of domain knowledge (constraint specifications) that can be 
tapped and so the design of a competition-based rule induction system should be a part of 
future work. 

Acknowledgements 

The author thanks the following persons for their ideas and comments concerning this 
work: Lashon Booker, Ken De Jong, John Greffenstette, Mark Johnston, Glenn Miller, 
and Shon Vick. 

401 



References 

Baker, J. (1988). Reducing bias and inefficiency in the selection algorithm. Proceedings 
of the Second International Conference on Genetic Algorithms (pp. 14-21). 
Hillsdale, NJ: Lawrence Erlbaum Associates, Pub. 

Baffes, P. and Wang, Lui (1988). Mobile transporter path planning using a genetic 
algorithm approach. Proceedings of the SPIE Cambridge Symposium on Advances 
in Intelligent Robotics Systems, vol. 1006 (pp. 226-234). 

De Jong, K. (1980). Adaptive system design: a genetic approach. IEEE Transactions on 
Systems, Man, and Cybernetics , SMC-lO(9) (pp.,566-574). 

Grefenstette, J. (1988). Credit assignment in genetic learning systems. Proceedings of 
the Seventh National Conference on Artificial Intelligence (pp. 596-600). San 
Mateo, CA: Morgan Kaufman Publishers, Inc. 

Goldberg, D. (1988). Genetic algorithms in search, optimization, and machine learning. 
Reading, MA: Addison-Wesley Pub. Co. Inc. 

Hilliard, M., G. Liepins, and M. Palmer (1988). A classifier-based system for 
discovering scheduling heuristics. Proceedings of the Second International 
Conference on Genetic Algorithms (pp. 23 1-325). Hillsdale, NJ: Lawrence Erlbaum 
Associates, Pub. 

Holland, J. (1975). Adaptation In Natural and Artificial Systems. Ann Arbor, MI: 
University of Michigan Press. 

Johnston, M. and H. Adorf (1989). Learning in stochastic neural networks for constraint 
satisfaction problems. Proceedings of the NASA Conf. on Space Telerobotics . 

Miller, G., M. Johnston, S. Vick, J. Sponsler, and K. Lindenmayer (1988). 
Knowledge based tools for Hubble Space Telescope planning and scheduling: 
constraints and strategies. Proceedings of the 1988 Goddard Conference On Space 
Applications of Artificial Intelligence. Reprinted in Telematics and Informatics 5 

Schaffer, J. and Morishima, A. (1988). Adaptive knowledge representation: a content 
sensitive recombination mechanism for genetic algorithms. International Journal of 
Intelligent Systems, Vol 3 (pp. 229-246). 

(1988) (pp. 197-212). 

402 


